8-bit Proprietary Microcontroller

 CMOS
F²MC-8L MB89870 Series

MB89875/P875/PV870

■ DESCRIPTION

The MB89870 series is a line of single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as dual-clock control system, five operating speed control stages, timers, a PWM timer, a serial interface, an A/D converter, an external interrupt, an LCD controller/ driver, and a watch prescaler.

■ FEATURES

- F^{2} MC-8L family CPU core
- Dual-clock control system
- Maximum memory space: 64 Kbytes
- Minimum execution time: $0.4 \mu \mathrm{~s} / 10 \mathrm{MHz}$
- Interrupt processing time: $3.6 \mu \mathrm{~s} / 10 \mathrm{MHz}$
- I/O ports: max. 45 channels
- 21-bit time-base timer
- 8 -bit PWM timer: 1 channel, 1 output channel
- $8 / 16$-bit timer/counter: 2 channels (16 bits $\times 1$ channel)
- 8 -bit serial I/O: 1 channel
- 10-bit A/D converter: 8 channels
- OP amp: 4 channels
- External interrupt (wake-up function): 8 channels

PACKAGE

(MQP-80C-P01)

80-pin Plastic QFP

(FPT-80P-M06)

80-pin Plastic SQFP

(FPT-80P-M05)

(Continued)

- Watch prescaler (15 bits)
- LCD controller/driver: 16 to 24 segments $\times 2$ to 4 commons
- Power-on reset function
- Low-power consumption modes (subclock mode, watch mode, sleep mode, and stop mode)
- QFP-80 (0.80-mm pitch) and SQFP-80 (0.50-mm pitch) package

- PRODUCT LINEUP

Part number Parameter	MB89875	MB89P875	MB89PV870
Classification	Mass production product (mask ROM product)	One-time PROM product	Piggyback/evaluation product (for development)
ROM size	$16 \mathrm{~K} \times 8$ bits (internal mask ROM)	$\begin{gathered} 16 \mathrm{~K} \times 8 \text { bits } \\ \text { (internal PROM) } \end{gathered}$	$32 \mathrm{~K} \times 8$ bits (external ROM)
RAM size	512×8 bits		$1 \mathrm{~K} \times 8$ bits
LCD display RAM	12×8 bits		
CPU functions	Number of instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: $1,8,16$ bits Minimum execution time: $0.4 \mu \mathrm{~s} / 10 \mathrm{MHz}$ to $6.4 \mu \mathrm{~s} / 10 \mathrm{MHz}, 62.5 \mu \mathrm{~s} / 32.768 \mathrm{kHz}$ Interrupt processing time: $3.6 \mu \mathrm{~s} / 10 \mathrm{MHz}$ to $57.6 \mu \mathrm{~s} / 10 \mathrm{MHz}, 562.5 \mu \mathrm{~s} / 32.768 \mathrm{kHz}$		
Ports	$\begin{array}{ll} \text { I/O ports (CMOS): } \quad \begin{array}{c} 45(42 \text { ports also serve as peripherals and } 8 \text { ports are also } \\ \text { an } N \text {-ch open-drain type.) } \end{array} \end{array}$		
8-bit PWM timer	8 -bit reload timer operation (toggled output capable, operating clock cycle: $0.4 \mu \mathrm{~s}$ to 3.3 ms) $\times 1$ channel 7/8-bit resolution PWM operation (conversion cycle: $51.2 \mu \mathrm{~s}$ to 839 ms) $\times 1$ channel		
Timers	8 -bit timer operation (operating clock cycle) $\times 2$ channels 16 -bit timer operation (operating clock cycle) $\times 1$ channel		
8-bit Serial I/O	8 bitsLSB first/MSB first selectabilityOne clock selectable from four operation clocks(one external shift clock, three internal shift clocks: $0.8 \mu \mathrm{~s}, 3.2 \mu \mathrm{~s}, 12.8 \mu \mathrm{~s}$)		
LCD controller	24 segments $\times 4$ commons		
10-bit A/D converter	10-bit resolution $\times 8$ channels A/D conversion mode (conversion time: $13.2 \mu \mathrm{~s}$) Sense mode (conversion time: $7.2 \mu \mathrm{~s}$)		
OP amps	4 channels The output can be used for A/D conveter input.		

(Continued)
(Continued)

Part number	MB89875	MB89P875	MB89PV870
Parameter	8 independent channels (edge selection, interrupt vector, and source flag) Rising edge/falling edge selectability (4 channels) Rising edge/falling edge/both edges selectability (4 channels) Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)		
Subclock mode, sleep mode, watch mode, and stop mode			

* : Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.")

PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89875 MB89P875	MB89PV870
FPT-80P-M06	\bigcirc	\times
FPT-80P-M05	\bigcirc	\times
MQP-80C-P01	\times	\bigcirc

\bigcirc : Available $\quad \times$:Not available
Note: For more information about each package, see section "■ Package Dimensions."

DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the folowing points:

- On the MB89P875, the program area starts from address 8006н but on the MB89PV870 and MB89875 starts from 8000н.
(On the MB89P875, addresses BFFOH to BFF6н comprise the option setting area, option settings can be read by readng these addresses. On the MB89PV870 and MB89875, addresses 8000 н to 8006 н could also be used as a program ROM. However, do not use these addresses in order to maintain compatibility of the MB89P875.)

2. Current Consumption

- In the case of the MB89PV870, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM.
However, the current consumption in sleep/stop modes is the same. (For more information, see sections "■ Electrical Characteristics" and "■ Example Characteristics.")

3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.
Before using options check section "■ Mask Options."
Take particular care on the following points:

- A pull-up resistor cannot be selectable for P30 to P37 if they are used as the analog input pin for an A/D converter.
- A pull-up resistor cannot be selectable for P10 to P17, and P34 to P37 if an OP amp is used.
- A pull-up resistor is not selectable for P40 to P47 and P23, P24 if they are used as LCD pins.
- Options are fixed on the MB89PV870.
(Top view)

(FPT-80P-M05)
(Top view)

- Pin assignment on package top (MB89PV870 only)

Pin no.	Pin name						
81	N.C.	89	A2	97	N.C.	105	$\overline{\text { OE }}$
82	VPP	90	A1	98	O4	106	N.C.
83	A12	91	A0	99	O5	107	A11
84	A7	92	N.C.	100	O6	108	A9
85	A6	93	O1	101	O7	109	A8
86	A5	94	O2	102	O8	110	A13
87	A4	95	O3	103	$\overline{\text { CE }}$	111	A14
88	A3	96	Vss	104	A10	112	Vcc

N.C.: Internally connected. Do not use.

(FPT-80P-M06)

MB89870 Series

PIN DESCRIPTION

Pin no.		Pin name	Circuit type	Function
SQFP ${ }^{*} 1$,	$\begin{aligned} & \text { QFP' }^{2} \\ & \text { QQFP }^{* 3} \end{aligned}$			
44	46	X0A	B	Subclock crystal oscillator pins (32.768 kHz)
45	47	X1A		
15	17	X1	A	Main clock crystal oscillator pins (max. 10 MHz)
16	18	X0		
17	19	MOD1	C	Operating mode selection pins Connect to Vss (GND) when using.
18	20	MOD0		
19	21	$\overline{\mathrm{RST}}$	J	Reset I/O pin " L " is output from this pin by an internal source. The internal circuit is initialized by the input of " L ".
20 to 27	22 to 29	P00/INT0 to P07/INT7	D	General-purpose I/O ports Also serve as an external interrupt input (wake-up function). External interrupt input is hysteresis input.
$\begin{aligned} & 28, \\ & 29, \\ & 30, \\ & 31, \\ & 32, \\ & 33, \\ & 34, \\ & 35 \end{aligned}$	$\begin{aligned} & 30, \\ & 31, \\ & 32, \\ & 33, \\ & 34, \\ & 35, \\ & 36, \\ & 37 \end{aligned}$	P10/INO- P11/IN0+, P12/IN1-, P13/IN1+, P14/IN2-, P15/IN2+, P16/IN3-, P17/IN3+	E	General-purpose I/O ports Also serve as the input for the OP amp
46 to 48	48 to 50	P20 to P22	F	General-purpose I/O ports
6 to 9	8 to 11	$\begin{aligned} & \text { P30/AN0 to } \\ & \text { P33/AN3 } \end{aligned}$	E	General-purpose I/O ports Also serve as the input for the A/D converter.
10 to 14	12 to 16	P34/AN4/OUT0 to P37/AN7/OUT3	G	General-purpose I/O ports Also serve as the A/D converter input and the output for the OP amp.
$\begin{gathered} 75 \text { to } 80, \\ 1,2 \end{gathered}$	$\begin{gathered} 77 \text { to } 80, \\ 1 \text { to } 4 \end{gathered}$	$\begin{aligned} & \text { P40/SEG16 to } \\ & \text { P47/SEG23 } \end{aligned}$	H	General-purpose I/O ports Also serve as an LCD controller/driver segment output.
36	38	P50/PWM	F	General-purpose I/O port The output type can be switched between N-ch open-drain and CMOS. Also serves as an 8-bit PWM timer.
$\begin{aligned} & 37, \\ & 38, \\ & 39 \end{aligned}$	$\begin{aligned} & 39, \\ & 40, \\ & 41 \end{aligned}$	$\begin{aligned} & \text { P51/TO2, } \\ & \text { P52/TO1, } \\ & \text { P53/EC } \end{aligned}$	F	General-purpose I/O ports The output type can be switched between N-ch open-drain and CMOS. Also serves as an 8/16-bit timer/counter.

*1: FPT-80P-M05
(Continued)
*2: FPT-80P-M06
*3: MQP-80C-P01
(Continued)

Pin no.		Pin name		Circuit type
SQFP $^{* 1,}$	QFP"2 MQFP	Function		

*1: FPT-80P-M05
*2: FPT-80P-M06
*3: MQP-80C-P01

- External EPROM pins (MB89PV870 only)

Pin no.	Pin name	I/O	Function
82	Vpp	0	"H" level output pin
$\begin{aligned} & 83 \\ & 84 \\ & 85 \\ & 86 \\ & 87 \\ & 88 \\ & 89 \\ & 90 \\ & 91 \end{aligned}$	A12 A7 A6 A5 A4 A3 A2 A1 A0	0	Address output pins
$\begin{aligned} & 93 \\ & 94 \\ & 95 \end{aligned}$	$\begin{aligned} & \mathrm{O} 1 \\ & \mathrm{O} 2 \\ & \mathrm{O} 3 \end{aligned}$	I	Data input pins
96	Vss	0	Power supply (GND) pin
$\begin{gathered} \hline 98 \\ 99 \\ 100 \\ 101 \\ 102 \end{gathered}$	$\begin{aligned} & \text { O4 } \\ & \text { O5 } \\ & \text { O6 } \\ & \text { O7 } \\ & \text { O8 } \end{aligned}$	I	Data input pins
103	$\overline{\mathrm{CE}}$	0	ROM chip enable pin Outputs "H" during standby.
104	A10	O	Address output pin
105	$\overline{\mathrm{OE}}$	O	ROM output enable pin Outputs "L" at all times.
$\begin{aligned} & 107 \\ & 108 \\ & 109 \end{aligned}$	$\begin{aligned} & \text { A11 } \\ & \text { A9 } \\ & \text { A8 } \end{aligned}$	0	Address output pins
110	A13	0	
111	A14	O	
112	Vcc	O	EPROM power supply pin
$\begin{gathered} 81 \\ 92 \\ 97 \\ 106 \end{gathered}$	N.C.	-	Internally connected pins Be sure to leave them open.

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- External clock input selection versions for crystal or ceramic oscillation type (main clock) At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega / 5.0 \mathrm{~V}$
B		- Crystal or ceramic oscillation type (subclock) At an oscillation feedback resistor of approximately 4.5 M $\Omega / 5.0 \mathrm{~V}$
C	$\square \square$	
D		- CMOS I/O (when selected as general-purpose ports) - Hysteresis input (when selected as an external interrupt input) - Pull-up resistor optional
E		- Analog input - CMOS I/O (when selected as general-purpose ports) - Pull-up resistor optional

(Continued)

Type	Circuit	Remarks
F		- CMOS I/O (when selected as general-purpose ports) - P50 to P57 are output only and can be switched between CMOS output and N -ch open-drain output. - Pull-up resistor optional
G		- Analog input - Analog output - CMOS I/O (when selected as general-purpose ports) - Pull-up resistor optional
H		- LCD controller/driver output - CMOS I/O (when selected as general-purpose ports) - Pull-up resistor optional
1		- LCD controller/driver output
J		- At an output pull-up resistor (P-ch) of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$ - CMOS hysteresis input

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{cc} or lower than V_{ss} is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (V_{cc}) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be $A V c c=D A V C=V c c$ and $A V s s=A V R=V_{s s}$ even if the A / D and D / A converters are not in use .

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

5. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that V cc ripple fluctuations ($\mathrm{P}-\mathrm{P}$ value) will be less than 10% of the standard V cc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

PROGRAMMING TO THE EPROM ON THE MB89P875

The MB89P875 is an OTPROM version of the MB89870 series.

1. Features

- 16-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in each mode such as 16-Kbyte PROM, option area is diagrammed below.

3. Programming to the EPROM

In EPROM mode, the MB89P875 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapater. When the operating ROM area for a single chip is 16 Kbytes (COOOH to FFFFH) the PROM can be programmed as follows:

- Programming procedure

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 4000 н to 7 FFFH (note that addresses C 000 to FFFFH while operating as a single chip assign to 4000 н to 7 FFFH in EPROM mode).
Load option data into addresses 3FFOH to 3FF6н of the EPROM programmer. (For information about each corresponding option, see " 7 . Setting OTPROM Options.")
(3) Program to 3FFOH to 7FFFн with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
FPT-80P-M06	ROM-80QF-28DP-8L3
FPT-80P-M05	ROM-80SQF-28DP-8L

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

MB89870 Series

7. Setting OTPROM Options

The programming procedure is the same as that for the PROM. Options can be set bu programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map:

- OTPROM option bit map

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3FFOH	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Single/dualclock system 1: Dual clock 0 : Single clock	Reset pin output 1:Yes 0: No	Power-on reset 1:Yes 0 : No	Oscillation stabilization time	
							$\begin{aligned} & \text { 00: } 2^{18} / \mathrm{F}_{\mathrm{CH}} \\ & 01: 2^{17} / \mathrm{F}_{\mathrm{CH}} \end{aligned}$	$\begin{aligned} & 10: 2^{13} / \mathrm{F}_{\mathrm{CH}} \\ & 11: 0 \end{aligned}$
3FF1H	P07 Pull-up 1: No 0 :Yes	P06 Pull-up 1: No $0: Y e s$	$\begin{aligned} & \text { P05 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$	P04 Pull-up 1: No 0 :Yes	P03 Pull-up 1: No 0:Yes	P02 Pull-up 1: No 0:Yes	P01 Pull-up 1: No $0: Y e s$	$\begin{aligned} & \text { Poo } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0: Yes } \end{aligned}$
3FF2н	Vacancy Readable and writable	Vacancy Readable and writable	$\begin{aligned} & \text { P44 to P47 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { O:Yes } \end{aligned}$	$\begin{aligned} & \text { P40 to P43 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { O:Yes } \end{aligned}$	$\begin{aligned} & \text { P16, P17 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { O:Yes } \end{aligned}$	$\begin{aligned} & \text { P14, P15 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { O:Yes } \end{aligned}$	$\begin{aligned} & \text { P12, P13 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0: Yes } \end{aligned}$	$\begin{aligned} & \text { P10, P11 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0:Yes } \end{aligned}$
3FF3-	P37 Pull-up 1: No 0 :Yes	P36 Pull-up 1: No 0 :Yes	P35 Pull-up 1: No 0 :Yes	P34 Pull-up 1: No 0 :Yes	P33 Pull-up 1: No 0:Yes	P32 Pull-up 1: No 0 :Yes	P31 Pull-up 1: No 0 0:Yes	P30 Pull-up 1: No $0: Y e s$
3FF4	P57 Pull-up 1: No $0: Y e s$	P56 Pull-up 1: No $0: Y e s$	P55 Pull-up 1: No 0:Yes	P54 Pull-up 1: No 0 :Yes	P53 Pull-up 1: No 0 : Yes	P52 Pull-up 1: No 0:Yes	P51 Pull-up 1: No 0 :Yes	P50 Pull-up 1: No 0:Yes
3FF5	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	P24 Pull-up 1:No 0 :Yes	P23 Pull-up 1: No 0 : Yes	P22 Pull-up 1: No 0 :Yes	P21 Pull-up 1: No 0 :Yes	$\begin{aligned} & \text { P20 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0: Yes } \end{aligned}$
3FF6н	Vacancy Readable and writable	Reserved bit Readable and writable						

Notes: - Set each bit to 1 to erase.

- Do not write 0 to the vacant bit.

The read value of the vacant bit is 1 , unless 0 is written to it.

- Always write 1 to the reserved bit.

PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TV

2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Compatible socket part number
LCC-32 (Rectangule)	ROM-32LC-28DP-YG
LCC-32 (Square)	ROM-32LC-28DP-S

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

3. Memory Space

Memory space in 32-Kbyte PROM is diagrammed below.

4. Programming to the EPROM

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0006н to 7FFFн.
(3) Program to 0000 to 7FFFн with the EPROM programmer.

BLOCK DIAGRAM

CPU CORE

1. Memory Space

The microcontrollers of the MB89870 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89870 series is structured as illustrated below.

Memory Space

MB89870 Series

2. Registers

The $\mathrm{F}^{2} \mathrm{MC}-8 \mathrm{~L}$ family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions
Accumulator (A):
A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Index register (IX):
A 16-bit register for index modification
Extra pointer (EP):
A 16-bit pointer for indicating a memory address
Stack pointer (SP):
A 16-bit register for indicating a stack area
Program status (PS):
A 16-bit register for storing a register pointer, a condition code

PC
A
T
IX
EP
PS

Initial value
FFFD
Undefined
Undefined
Undefined
Undefined
Undefined
I-flag = $0, \mathrm{IL} 1,0=11$
Other bits are undefined.

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

Structure of the Program Status Register

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1 . Interrupt is prohibited when the flag is set to 0 . Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	
1	1	3	

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0 .
Z-flag: Set when an arithmetic operation results in 0 . Cleared otherwise.
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used on the MB89875 (RAM 512×8 bits). The bank currently in use is indicated by the register bank pointer (RP).
Note: The number of register banks that can be used varies with the RAM size.

Register Bank Configuraiton

This address $=0100 \mathrm{H}+8 \times($ RP $)$

Memory area

I/O MAP

Address	Read/write	Register name	Register description	Bit name							
				Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00H	R/W	PDR0	Port 0 data register	PD07	PD06	PD05	PD04	PD03	PD02	PD01	PD00
01н	W	DDR0	Port 0 data direction register	DD07	DD06	DD05	DD04	DD03	DD02	DD01	DD00
02н	R/W	PDR1	Port 1 data register	PD17	PD16	PD15	PD14	PD13	PD12	PD11	PD10
03н	W	DDR1	Port 1 data direction register	DD17	DD16	DD15	DD14	DD13	DD12	DD11	DD10
04	R/W	PDR2	Port 2 data register	-	-	-	PD24	PD23	PD22	PD21	PD20
05H	R/W	DDR2	Port 2 data direction register	-	-	-	DD24	DD23	DD22	DD21	DD20
06н	Vacancy										
07	R/W	SCC	System clock control register	SCM	-	-	WT1	WT0	SCS	CS1	CSO
08н	R/W	SMC	System mode control register	STP	SLP	SPL	RST	TMD	-	-	-
09н	R/W	WDTE	Watchdog timer control register	CS	-	-	-	WTE3	WTE2	WTE1	WTE0
ОАн	R/W	TBCR	Time-base timer control register	TBIF	TBIE	-	-	-	TBC1	TBCO	TBR
OBH	R/W	WCR	Watch prescaler control register	WIF	WIE	WC1	WCO	-	WS1	WSO	WCLR
$0 \mathrm{CH}_{\mathrm{H}}$	R/W	PDR3	Port 3 data register	PD37	PD36	PD35	PD34	PD33	PD32	PD31	PD30
ODH	R/W	DDR3	Port 3 data direction register	DD37	DD36	DD35	DD34	DD33	DD32	DD31	DD30
ОЕн	R/W	PDR4	Port 4 data register	PD47	PD46	PD45	PD44	PD43	PD42	PD41	PD40
OFH	R/W	DDR4	Port 4 data direction register	DD47	DD46	DD45	DD44	DD43	DD42	DD41	DD40
10н	Vacancy										
11н	Vacancy										
12H	Vacancy										
13H	Vacancy										
14 H	Vacancy										
15 H	Vacancy										
16н	R/W	PDR5	Port 5 data register	PD57	PD56	PD55	PD54	PD53	PD52	PD51	PD50
17\%	R/W	DDR5	Port 5 data direction register	DD57	DD56	DD55	DD54	DD53	DD52	DD51	DD50
18H	Vacancy										
19н	Vacancy										
$1 \mathrm{AH}^{\text {¢ }}$	R/W	CHG5	Port 5 switching register	CHG1	-	-	-	CHGO	-	-	-
18н	Vacancy										
1 CH	Vacancy										

(Continued)

MB89870 Series

(Continued)

Address	Read/write	Register name	Register description	Bit name							
				Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1D ${ }_{\text {H }}$	W	ICR3	Port 3 input control register	PE37	PE36	PE35	PE34	PE33	PE32	PE31	PE30
1Ен	R/W	CNTR	PWM control register	P/TX	OE	P1	P0	TPE	TIR	OE1	TIE
1 FH	W	COMP	PWM compare register	CMP7	CMP6	CMP5	CMP4	CMP3	CMP2	CMP1	CMPO
20-	Vacancy										
$21^{\text {H }}$	Vacancy										
22H	Vacancy										
23H	Vacancy										
24-	R/W	T2CR	Timer 2 control register	T2IF	T2IE	TO21	TO20	TC21	TC20	STP2	STR2
25 H	R/W	T1CR	Timer 1 control register	T1IF	TIIE	T011	T010	TC11	TC10	STP1	STR1
26н	R/W	T2DR	Timer 2 data register	T2D7	T2D6	T2D5	T2D4	T2D3	T2D2	T2D1	T2D0
27 ${ }^{\text {}}$	R/W	T1DR	Timer 1 data register	T1D7	T1D6	T1D5	T1D4	T1D3	T1D2	T1D1	T1D0
28н	R/W	SMR	Serial mode register	SIOF	SIOE	SCKE	SOE	CKS1	CKSO	BDS	SST
29н	R/W	SDR	Serial data register	SDR7	SDR6	SDR5	SDR4	SDR3	SDR2	SDR1	SDR0
$2 \mathrm{AH}_{\text {н }}$	Vacancy										
$2 \mathrm{BH}_{\mathrm{H}}$	Vacancy										
$2 \mathrm{CH}_{H}$	R/W	OPC	OP amp control register	PD7	PD6	AD5	PD4	-	-	-	-
2Dн	R/W	ADC1	A/D conveter control register 1	ANS3	ANS2	ANS1	ANSO	ADI	ADMV	SIFM	AD
2Ен	R/W	ADC2	A/D converter control register 2	-	-	-	-	ADIE	ADMD	-	TEST
2 FH	R/W	ADCH	A/D converter data register	-	-	-	-	-	-	ADC9	ADC8
30н	R/W	ADCL	A/D converter data register	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0
31н	R/W	EIE1	External interruput 1 enable register	El71	EI70	El61	IE60	El51	El50	El41	EI40
32н	R/W	EIF1	External interrupt 1 flag register	IF7	IF6	IF5	IF4	IE7	IE6	IE5	IE4
33-	R/W	EIE2	External interrupt 2 enable register	El3	IF3	-	-	IE3	IE2	IE1	IE0
34 to 5FH	Vacancy										
60H to 6BH	R/W	VRAM	Display data RAM	Display data							
$6 \mathrm{CH}_{\text {to }} 6 \mathrm{FH}$	Vacancy										

(Continued)
(Continued)

Address	Read/write	Register name	Register description	Bit name							
				Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
70н	R/W	LCR1	LCD controller/driver control register 1	CSS	LCEN	VSEL	BK	MS1	MSO	FP1	FPO
71н	R/W	LCR2	LCD controller/driver control register 2	COM1	COMO	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
72н to 7Bн	Vacancy										
7С ${ }_{\text {H }}$	W	ILR1	Interrupt level setting register 1	L31	L30	L21	L20	L11	L10	L01	L00
7D	W	ILR2	Interrupt level setting register 2	L71	L70	L61	L60	L51	L50	L41	L40
7Ен	W	ILR3	Interrupt level setting register 3	LB1	LBO	LA1	LA0	L91	L90	L81	L80
7F\%	Vacancy										

Note: Do not use vacancies.

MB89870 Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$\left(\mathrm{AV}\right.$ ss $\left.=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}\right)$					
Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc AV cc	Vss-0.3	Vss +7.0	V	*
A/D converter reference input voltage	AVR	Vss - 0.3	Vss +7.0	V	
LCD power supply voltage	V0 to V3	Vss-0.3	Vss +7.0	V	V0 to V3 must not exceed Vcc.
Input voltage	V	Vss-0.3	$\mathrm{Vcc}+0.3$	V	
Output voltage	Vo	Vss-0.3	$\mathrm{Vcc}+0.3$	V	
"L" level maximum output current	loL	-	20	mA	
"L" level average output current	lolav	-	4	mA	Average value (operating current \times operating rate)
" L " level total maximum output current	Slo	-	100	mA	
"L" level total average output current	\sum lolav	-	40	mA	Average value (operating current \times operating rate)
"H" level maximum output current	Іон	-	-20	mA	
" H " level average output current	lohav	-	-4	mA	Average value (operating current \times operating rate)
"H" level total maximum output current	\sum Іон	-	-50	mA	
" H " level total average output current	\sum lohav	-	-20	mA	Average value (operating current \times operating rate)
Power consumption	Po	-	300	mW	
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*: Use $A V c c$ and $V c c$ set at the same voltage.
Take care so that $A V R$ does not exceed $A V c c+0.3 V$ and $A V c c$ does not exceed $V c c$, such as when power is turned on.

Precautions:Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Recommended Operating Conditions

Parameter	Symbol	$(\mathrm{AV} \mathrm{ss}=\mathrm{V} s=0.0 \mathrm{~V})$			
		Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc AV cc	2.2*	6.0*	V	Normal operation assurance range* MB89875
		2.7	6.0	V	Normal operation assurance range MB89PV870/P875
		1.5	6.0	V	Retains the RAM state in stop mode
A/D converter reference input voltage	AVR	0.0	AV cc	V	
LCD power supply voltage	V0 to V3	Vss	Vcc	V	LCD power supply range (The optimum value is dependent on the LCD element in use.)
Operating temperature	$\mathrm{T}_{\text {A }}$	-40	+85	${ }^{\circ} \mathrm{C}$	

*: These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1 and " 5 . A/D Converter Electrical Characteristics."

Note: The shaded area is assured only for the MB89875.

Figure 1 Operating Voltage vs. Main Clock Operating Frequency

Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of $4 /$ /сн. Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operatina speed is switched usina a aear.

MB89870 Series

3. DC Characteristics

$\left(\mathrm{AV} \mathrm{cc}=\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level input voltage	VIH	$\begin{aligned} & \text { P20 to P24, } \\ & \text { P30 to P37, P40 to P47, } \\ & \text { P50 to P52, P54, P56 } \end{aligned}$	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	VIнs	P00 to P07, P10 to P17, MODO, MOD1, $\overline{R S T}$, P53, P55, P57	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	
"L" level input voltage	VIL	$\begin{aligned} & \text { P20 to P24, } \\ & \text { P30 to P37, P40 to P47, } \\ & \text { P50 to P52, P54, P56 } \end{aligned}$	-	Vss - 0.3	-	0.3 Vcc	V	
	Vils	P00 to P07, P10 to P17, MODO, MOD1, $\overline{R S T}$, P53, P55, P57	-	Vss - 0.3	-	0.2 Vcc	V	
Open-drain output pin application voltage	V	P50 to P57	-	Vss - 0.3	-	Vcc-0.3	V	N -ch open-drain
"H" level output voltage	Vон	P00 to P07, P10 to P17, P20 to P24, P30 to P37, P40 to P47, P50 to P57	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	4.0	-	-	V	
"L" level output voltage	Vol	P00 to P07, P10 to P17, P20 to P24, P30 to P37, P40 to P47, P50 to P57	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
Input leakage current (Hi-Z output leakage current)	l,	P00 to P07, P10 to P17, P20 to P24, P30 to P37, P40 to P47, P50 to P57 MODO, MOD1, $\overline{R S T}$	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\text {cc }}$	-	-	± 5	$\mu \mathrm{A}$	With pull-up resistor
Pull-up resistance	Rpull	P00 to P07, P10 to P17, P20 to P24, P30 to P37, P40 to P47, P50 to P57	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	$\mathrm{k} \Omega$	With pull-up resistor

(Continued)
$\left(\mathrm{AV} \mathrm{cc}=\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Power supply current ${ }^{11}$	Icc1	Vcc	$\begin{aligned} & \mathrm{FcH}=10 \mathrm{MHz} \\ & \mathrm{VCc}=5.0 \mathrm{~V} \\ & \mathrm{tinst}^{2}=0.4 \mu \mathrm{~s} \end{aligned}$	-	12	20	mA	
	Icc2		$\begin{aligned} & \mathrm{FCH}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{Cc}}=3.0 \mathrm{~V} \\ & \mathrm{tinst}^{2}=6.4 \mu \mathrm{~s} \end{aligned}$	-	1.0	2	mA	$\begin{aligned} & \text { MB89875/ } \\ & \text { PV870 } \end{aligned}$
				-	1.5	2.5	mA	MB89P875
	Iccs 1			-	3	7	mA	
	Iccs2			-	0.5	1.5	mA	
	Iccı		$\begin{aligned} & \mathrm{FCL}=32.768 \mathrm{kHz}, \\ & \mathrm{~V} \mathrm{CC}=3.0 \mathrm{~V} \\ & \text { Subclock mode } \end{aligned}$	-	50	100	$\mu \mathrm{A}$	$\begin{aligned} & \text { MB89875/ } \\ & \text { PV870 } \end{aligned}$
				-	500	700	$\mu \mathrm{A}$	MB89P875
	Iccls		$\begin{aligned} & \hline \mathrm{FcL}=32.768 \mathrm{kHz}, \\ & \mathrm{~V} \mathrm{cc}=3.0 \mathrm{~V} \\ & \text { Subclock sleep } \\ & \text { mode } \end{aligned}$	-	15	50	$\mu \mathrm{A}$	
	Icct		$\begin{aligned} & \mathrm{FcL}=32.768 \mathrm{kHz}, \\ & \mathrm{~V} \mathrm{Cc}=3.0 \mathrm{~V} \end{aligned}$ - Watch mode - Main clock stop mode at dualclock system	-	3	15	$\mu \mathrm{A}$	
	IcCH		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ - Subclock stop mode - Main clock stop mode at singleclock system	-	-	1	$\mu \mathrm{A}$	
	IA	AVcc	$\mathrm{F}_{\text {сн }}=10 \mathrm{MHz} \text {, }$ when A / D conversion is activated	-	1.5	3	mA	
	Іан		$\begin{aligned} & \mathrm{F} \text { сн }=10 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \end{aligned}$ when A / D conversion is stopped	-	-	1	$\mu \mathrm{A}$	

(Continued)
(Continued)

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
LCD divided resistance	Rlcd	-	Between Vcc and V0 at $\mathrm{Vcc}=5.0 \mathrm{~V}$	300	500	750	$\mathrm{k} \Omega$	
COMO to 3 output impedance	Rvcom	COMO to 3	V 1 to V3 $=5.0 \mathrm{~V}$	-	-	2.5	$\mathrm{k} \Omega$	
SEG0 to 24 output impedance	Rvseg	SEG0 to 24		-	-	15	$\mathrm{k} \Omega$	
LCD controller/driver leakage current	ILCDL	V0 to V3, COMO to 3 SEG0 to SEG24	-	-	-	± 1	$\mu \mathrm{A}$	
Input capacitance	Cin	Other than $\mathrm{AV} \mathrm{cc}, \mathrm{AV}$ ss, Vcc , and V_{ss}	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

*1: The power supply current is measured at the external clock.
*2: For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."
Note: For pins which serve as the LCD and ports (P23, P24 and P40 to P47), see the port parameter when these pins are used as ports and the LCD parameter when they are used as LCD pins.

4. AC Characteristics

(1) Reset Timing

$$
\left(\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Value		Unit	Remarks
				Min.		

(2) Power-on Reset

Parameter	Symbol	Condition			V ss	$=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85
			Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	tR	-	-	50	ms	Power-on reset function only
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

Note: Make sure that power supply rises within the selected oscillation stabilization time.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

(3) Clock Timing

$\left(\mathrm{AV}\right.$ ss $=\mathrm{V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$								
Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Clock frequency	Fch	$\mathrm{X} 0, \mathrm{X} 1$	-	1	-	10	MHz	
	FcL	X0A, X1A		-	32.768	-	kHz	
Clock cycle time	thcyl	X0, X1		100	-	1000	ns	
	tLCyL	X0A, X1A		-	30.5	-	$\mu \mathrm{s}$	
Input clock pulse width	Pwh PwL	X0		20	-	-	ns	External clock
Input clock rising/falling time	tcr tcF	X0		-	-	10	ns	External clock

X0 and X1 Timing and Conditions

Main Clock Conditions

ceramic resonator is used

When an external clock is used

X0A and X1A Timing and Conditions

Subclock Conditions

MB89870 Series

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	$4 / \mathrm{F}_{\mathrm{CH}}, 8 / \mathrm{F}_{\mathrm{CH}}, 16 / \mathrm{F}_{\mathrm{CH}}, 64 / \mathrm{F}_{\mathrm{CH}}$	$\mu \mathrm{s}$	$\left(4 / \mathrm{F}_{\mathrm{CH}}\right)$ tinst $=0.4 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz}$
		$\mu \mathrm{s}$	tinst $=61.036 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{CL}}=32.768 \mathrm{kHz}$	

Note: When operating at 10 MHz , the cycle varies with the set execution time.
(5) Serial I/O Timing

$\left(\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}\right.$ ss $=\mathrm{V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK	Internal shift clock mode	2 tins*	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tstov	SCK, SO		-200	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		1/2 tinst*	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$	
Serial clock "H" pulse width	tshsL	SCK	External shift clock mode	1 tinst*	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tstsh			1 tinst*	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tslov	SCK, SO		0	200	ns	
Valid SI \rightarrow SCK \uparrow	tivs ${ }^{\text {r }}$	SI, SCK		1/2 tinst*	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		1/2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction Cycle."

Internal Shift Clock Mode

External Shift Clock Mode

(6) Peripheral Input Timing

$\left(\mathrm{V}\right.$ cc $=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}_{\text {ss }}=\mathrm{V}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Pin	Value		Unit	Remarks
			Min.	Max.		
Peripheral input " H " pulse width 1	tıLH1	EC	1 tins* ${ }^{*}$	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 1	thill		1 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "H" pulse width 2	tıLH2	INT7 to INT0	2 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 2	tHiL2		2 tins**	-	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction Cycle."

MB89870 Series

5. A/D Converter Electrical Characteristics

$\left(\mathrm{AVcc}=\mathrm{V} \mathrm{cc}=+3.5 \mathrm{~V}\right.$ to $+6.0 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Resolution	-	-	-	-	-	10	bit	
Total error			AVR $=$ AVcc	-	-	± 3.0	LSB	
Linearity error				-	-	± 2.0	LSB	
Differential linearity error				-	-	± 1.5	LSB	
Zero transition voltage	Vот			AVss-1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	mV	
Full-scale transition voltage	$V_{\text {fst }}$			AVR-3.5 LSB	AVR-1.5 LSB	AVR + 0.5 LSB	mV	
Interchannel disparity	-			-	-	4.0	LSB	
A/D mode conversion time			-	-	33 tinst*	-	$\mu \mathrm{S}$	
Sense mode conversion time				-	18 tinst*	-	$\mu \mathrm{S}$	
Analog port input current	lain	ANO to AN7		-	-	10	$\mu \mathrm{A}$	
Analog input voltage	-			0.0	-	AVR	V	
Reference voltage	-	AVR		0.0	-	AVcc	V	
Reference voltage supply current	In		AVR $=5.0 \mathrm{~V}$, when A/D conversion is activated	-	200	-	$\mu \mathrm{A}$	
	IRH		$\text { AVR }=5.0 \mathrm{~V} \text {, }$ when A / D conversion is stopped	-	-	1	$\mu \mathrm{A}$	

*: For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

(1) A/D Glossary

- Resolution

Analog changes that are identifiable with the A/D converter
When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$.

- Linearity error (unit: LSB)

The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 1111 1111" \leftrightarrow "11 1111 1110") from actual conversion characteristics

- Differential linearity error (unit: LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

- Total error (unit: LSB)

The difference between theoretical and actual conversion values

(2) Precautions

- Input impedance of the analog input pins

The A/D converter used for the MB89870 series contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.

For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below $10 \mathrm{k} \Omega$).
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about $0.1 \mu \mathrm{~F}$ for the analog input pin.

Analog Input Equivalent Circuit

- Error

The smaller the | AVR - AVss |, the greater the error would become relatively.

MB89870 Series

6. OP Amp Electrical Characteristics

(1) $\mathrm{AV} \mathrm{cc}=5.0 \mathrm{~V}$
$\left(\mathrm{AV} \mathrm{cc}=\mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{AV}$ ss $=\mathrm{V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
1/O voltage range	-	$\begin{aligned} & \text { INO } \pm \text { to } \\ & \text { IN3 } \end{aligned}$	-	$0.5 \mathrm{Vcc}-1.25$	0.5 Vcc	$0.5 \mathrm{Vcc}+1.25$	V	
Minimum load resistance	-	-	-	100	-	-	k Ω	
Maximum load resistance	-	-	-	-	-	100	pF	
Offset voltage	-	-	-	-10	0	+10	mV	
Gain-bandwidth production	-	-	-	-	1.8	-	MHz	
DC gain	-	-	-	-	75	-	dB	
Slew rate	-	-	-	-	0.9	-	V/ $\mu \mathrm{s}$	

(2) $\mathrm{AV} \mathrm{cc}=3.0 \mathrm{~V}$
$\left(\mathrm{AV} \mathrm{Cc}=\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}\right.$ to $3.3 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value				Unit
I/O voltage range	-	INO \pm to IN3 \pm	-	0.5	$0.5 \mathrm{Vcc}-0.35$	$\mathrm{~V}_{\mathrm{cc}-1.20}$	V	
Minimum load resistance	-	-	-	250	-	-	$\mathrm{k} \Omega$	
Maximum load resistance	-	-	-	-	-	100	$\mu \mathrm{~A}$	
Offset voltage	-	-	-	-10	0	+10	mV	
Gain-bandwidth production	-	-	-	-	0.5	-	MHz	
DC gain	-	-	-	-	75	-	dB	
Slew rate	-	-	-	-	0.1	-	$\mathrm{V} / \mu \mathrm{s}$	

EXAMPLE CHARACTERISTICS

(1) "L" Level Output Voltage

Vol vs. Iol

(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)

(2) "H" Level Output Voltage

(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

(5) Power Supply Current (External Clock)

(Continued)

(6) Pull-up Resistance

■ INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)
(Continued)

Symbol	
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, $\mathrm{i}=0$ to 7)
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
$((\times))$	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:
Mnemonic: Assembler notation of an instruction
~: Number of instructions
\#: Number of bytes
Operation: Operation of an instruction
TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:

- "-" indicates no change.
- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of AL and AH immediately before the instruction is executed.
- 00 becomes 00.
$\mathrm{N}, \mathrm{Z}, \mathrm{V}, \mathrm{C}: \quad$ An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.
OP code: Code of an instruction. If an instruction is more than one code, it is written according to the following rule:
Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

MB89870 Series

Table 2 Transfer Instructions (48 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$(\mathrm{dir}) \leftarrow(\mathrm{A})$	-	-	-	- -	45
MOV @IX +off,A	4	2	$($ (IX) +off $) \leftarrow(\mathrm{A})$	-	-	-	----	46
MOV ext,A	4	3	$(\mathrm{ext}) \leftarrow(\mathrm{A})$	-	-	-	----	61
MOV @EP,A	3	1	$((E P)) \leftarrow(A)$	-	-	-	----	47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	$(A) \leftarrow d 8$	AL	-	-	+ + - -	04
MOV A,dir	3	2	$(\mathrm{A}) \leftarrow$ (dir)	AL	-	-	+ + -	05
MOV A,@IX +off	4	2	(A) $\leftarrow\left(\begin{array}{l}(I X)+\text { off })\end{array}\right.$	AL	-	-	+ + -	06
MOV A,ext	4	3	(A) \leftarrow (ext)	AL	-	-	+ + -	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow\left(\begin{array}{l}\text { (A) })\end{array}\right.$	AL	-	-	+ + -	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow\left(\begin{array}{l}\text { (EP) }\end{array}\right)$	AL	-	-	+ + - -	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	+ + - -	08 to 0F
MOV dir,\#d8	4	3	$(\mathrm{dir}) \leftarrow \mathrm{d} 8$	-	-	-	----	85
MOV @IX +off,\#d8	5	3	((IX) +off) $\leftarrow \mathrm{d} 8$	-	-	-	----	86
MOV @EP,\#d8	4	2	$($ (EP)) $\leftarrow \mathrm{d} 8$	-	-	-	----	87
MOV Ri,\#d8	4	2	(Ri) $\leftarrow \mathrm{d} 8$	-	-	-	----	88 to 8F
MOVW dir,A	4	2	(dir) $\leftarrow(\mathrm{AH}),($ dir +1$) \leftarrow(\mathrm{AL})$	-	-	-	----	D5
MOVW @IX +off,A	5	2	$\begin{aligned} & ((\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ & ((\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{aligned}$	-	-	-	----	D6
MOVW ext,A	5	3	$(\mathrm{ext}) \leftarrow(\mathrm{AH}),($ ext +1$) \leftarrow(\mathrm{AL})$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-	----	D7
MOVW EP,A	2	1	$(\mathrm{EP}) \leftarrow(\mathrm{A})$	-	-	-	----	E3
MOVW A,\#d16	3	3	$(A) \leftarrow d 16$	AL	AH	dH	+	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow$ (dir), $(\mathrm{AL}) \leftarrow($ dir +1$)$	AL	AH	dH	+	C5
MOVW A,@IX +off	5	2	$\begin{aligned} & (\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off}), \\ & (\mathrm{AL}) \leftarrow((\mathrm{IX})+\mathrm{off}+1) \end{aligned}$	AL	AH	dH	+ + -	C6
MOVW A,ext	5	3	$(A H) \leftarrow(e x t),(A L) \leftarrow(e x t+1)$	AL	AH	dH	+ +	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{A}), \mathrm{},(\mathrm{AL}) \leftarrow((\mathrm{A}))+1)$	AL	AH	dH	+ + -	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP}) \mathrm{)},(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+ + -	C7
MOVW A,EP	2	1	$(\mathrm{A}) \leftarrow$ (EP)	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	----	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	----	E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH	----	F2
MOVW SP,A	2	1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	----	E1
MOVW A,SP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH	----	F1
MOV @A,T	3	1	$($ (A)) \leftarrow (T)	-	-	-	----	82
MOVW @A,T	4	1	$((A)) \leftarrow(\mathrm{TH}),((\mathrm{A})+1) \leftarrow(\mathrm{TL})$	-	-	-	----	83
MOVW IX,\#d16	3	3	(IX) \leftarrow d16	-	-	-	----	E6
MOVW A,PS	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PS})$	-	-	dH	----	70
MOVW PS,A	2	1	(PS) \leftarrow (A)	-	-	-	+ + + +	71
MOVW SP,\#d16	3	3	$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-	----	E5
SWAP	2	1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	----	10
SETB dir: b	4	2	(dir) $\mathrm{b} \leftarrow 1$	-	-	-	----	A8 to AF
CLRB dir: b	4	2	(dir) $\mathrm{b} \leftarrow 0$	-	-	-	----	A0 to A7
XCH A,T	2	1	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3	1	(A) $\leftrightarrow(\mathrm{EP})$	-	-	dH	-	F7
XCHW A,IX	3	1	(A) $\leftrightarrow(\mathrm{IX})$	-	-	dH	----	F6
XCHW A,SP	3		(A) $\leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Notes: - During byte transfer to $\mathrm{A}, \mathrm{T} \leftarrow \mathrm{A}$ is restricted to low bytes.

- Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow(A)+(R i)+C$	-	-	-	+ + + +	28 to 2F
ADDC A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+\mathrm{d} 8+\mathrm{C}$	-	-	-	+ + + +	24
ADDC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+($ dir $)+C$	-	-	-	+ + + +	25
ADDC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+((\mathrm{X})+$ off $)+\mathrm{C}$	-	-	-	+ + + +	26
ADDC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+((E P))+C$	-	-	-	+ + + +	27
ADDCW A	3	1	$(A) \leftarrow(A)+(T)+C$	-	-	dH	+ + + +	23
ADDC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{AL})+(\mathrm{TL})+\mathrm{C}$	-	-	-	+ + + +	22
SUBC A,Ri	3	1	$(A) \leftarrow(A)-(R i)-C$	-	-	-	+ + + +	38 to 3F
SUBC A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-\mathrm{d} 8-\mathrm{C}$	-	-	-	+ + + +	34
SUBC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-($ dir $)-C$	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-((\mathrm{X})+$ off $)-\mathrm{C}$	-	-	-	+ + + +	36
SUBC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-((\mathrm{EP}))-\mathrm{C}$	-	-	-	+ + + +	37
SUBCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{T})-(\mathrm{A})-\mathrm{C}$	-	-	dH	+ + + +	33
SUBC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{TL})-(\mathrm{AL})-\mathrm{C}$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	+ + +	C8 to CF
INCW EP	3	1	$(\mathrm{EP}) \leftarrow(\mathrm{EP})+1$	-	-	-	----	C3
INCW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	-	-	-	----	C2
INCW A	3	1	(A) $\leftarrow(\mathrm{A})+1$	-	-	dH	+ +	C0
DEC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})-1$	-	-	-	+ + + -	D8 toDF
DECW EP	3	1	$(E P) \leftarrow(E P)-1$	-	-	-	----	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	----	D2
DECW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-1$	-	-	dH	+ +	D0
MULU A	19	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \times(\mathrm{TL})$	-	-	dH	----	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	-	11
ANDW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \wedge(\mathrm{T})$	-	-	dH	+ + R -	63
ORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \vee(\mathrm{T})$	-	-	dH	$++\mathrm{R}-$	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	+ + R -	53
CMP A	2	1	(TL) - (AL)	-	-	-	+ + + +	12
CMPW A	3	1	(T) - (A)	-	-	-	+ + + +	13
RORC A	2	1	$\rightarrow \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	+ + - +	03
ROLC A	2	1	$-\mathrm{C} \leftarrow \mathrm{A} \leftarrow$	-	-	-	+ + - +	02
CMP A,\#d8	2	2	(A) - d8	-	-	-	+ + +	14
CMP A, dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A,@EP	3	1	(A) $-\left(\begin{array}{l}(E P)\end{array}\right)$	-	-	-	+ + + +	17
CMP A,@IX +off	4	2	(A) - ((IX) + off)	-	-	-	+ + + +	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2	1	Decimal adjust for addition	-	-	-	+ + + +	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	52
XOR A, \#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	-	-	-	$++\mathrm{R}-$	54
XOR A, dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall($ dir $)$	-	-	-	$++\mathrm{R}-$	55
XOR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{EP}))$	-	-	-	+ + R -	57
XOR A,@IX +off	4	2	(A) $\leftarrow(\mathrm{AL}) \forall((\mathrm{IX})+$ off $)$	-	-	_	$++\mathrm{R}-$	56
XOR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	$++\mathrm{R}-$	58 to 5F
AND A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	62
AND A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge \mathrm{d} 8$	-	-	-	$++\mathrm{R}-$	64
AND A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge($ dir $)$	-	-	-	+ + R -	65

MB89870 Series

(Continued)

Mnemonic	\sim	\#	Operation	TL	TH	AH	N Z V C	OP code
AND A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$)	-	-	-	+ + R -	67
AND A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	66
AND A,Ri	3	1	$(A) \leftarrow(A L) \wedge(R i)$	-	-	-	+ + R -	68 to 6F
OR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{TL})$	-	-	-	+ + R -	72
OR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee \mathrm{d} 8$	-	-	-	+ + R -	74
OR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{dir})$	-	-	-	+ + R -	75
OR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{EP}))$	-	-	-	+ + R -	77
OR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{IX})+$ off $)$	-	-	-	$++\mathrm{R}-$	76
OR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$	-	-	-	+ + R -	78 to 7F
CMP dir,\#d8	5	3	(dir) - d8	-	-	-	+ + + +	95
CMP @EP,\#d8	4	2	((EP)) - d8	-	-	-	+ + + +	97
CMP @IX +off,\#d8	5	3	((IX) +off) - d8	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) - d8	-	-	-	+ + + +	98 to 9F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-	--- -	C1
DECW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$	-	-	-		D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $Z=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FD
BNZ/BNE rel	3	2	If $\mathrm{Z}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FC
BC/BLO rel	3	2	If $\mathrm{C}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F9
BNC/BHS rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}$ + rel	-	-	-	----	F8
BN rel	3	2	If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FB
BP rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	_	_	_	--- -	FA
BLT rel	3	2	If $\mathrm{V} \forall \mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FF
BGE rel	3	2	If $\mathrm{V} \forall \mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FE
BBC dir: b,rel	5	3	If (dir: b) $=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	-+--	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) $=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	- + - -	B8 to BF
JMP @A	2	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	----	E0
JMP ext	3	3	$(\mathrm{PC}) \leftarrow \mathrm{ext}$	-	-	-	----	21
CALLV \#vct	6	1	Vector call	-	-	-	----	E8 to EF
CALL ext	6	3	Subroutine call	-	-	-	----	31
XCHW A,PC	3	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	dH	----	F4
RET	4	1	Return from subrountine	-	-	-	--	20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZ V C	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1		-	-	dH	----	50
PUSHW IX	4	1		-	-	-	----	41
POPW IX	4	1		-	-	-	----	51
NOP	1	1		-	-	-	----	00
CLRC	1	1		-	-	-	$---R$	81
SETC	1	1		-	-	-	$---S$	91
CLRI	1	1		-	-	-	----	80
SETI				-	-	-	----	90

■ INSTRUCTION MAP

	童要	б	$\frac{3}{9}$	曾	＋	＊	\times	¢	\％	¢			签	\％	蓲	
	I		家	家	家				$\frac{\overrightarrow{2}}{3}$	咅	詰	\％	部	충	教	
	會	$\hat{z}_{\tilde{W}_{0}^{m}}^{2}$	总	咅		$\hat{e}^{\frac{2}{2}}$	耪㕄	耪菏		$\overline{\bar{x}}$		깐	き	－	$\overbrace{\text { ®ix }}$	${ }_{\text {® }}^{\text {® }}$
	童		鎴	晋	$\frac{0}{2}$	酋	䂴晨	$\frac{z_{i}^{2}}{4}$	\bigcirc	$\stackrel{\bar{x}}{\underline{\underline{x}}}$	O	O	O	${ }_{\text {¢ }}^{\text {® }}$	${ }_{\square}^{\text {® }}$	
		票榢			品単	畐落	$\begin{aligned} \text { 㝻感 } \end{aligned}$				湢票	稫客	䁏	㵽害	誓	罍
	管	$8_{0}^{\frac{5}{5}}$			管		至	躳	$⿷_{0}^{\frac{5}{0}}$	$\stackrel{8}{0}_{0}^{5}$		匿		$\frac{x_{0}}{\tilde{n}}$	$\underbrace{\text { ¢ }}_{\text {\％}}$	
	E	嘔	$\frac{\partial}{2}$	$\frac{0}{2}^{\alpha}$	영		棓竜		을물	$\stackrel{\rho}{\bar{c}} \bar{x}_{\bar{x}}$	言菏		$\stackrel{0}{\bar{z}}^{\frac{1}{2}}$	䢒	尔	
	퐁	앙			吾		刍景	方刨	家然	耪宸	家萡		家咅			
	亚	豪	${ }_{8}^{\text {¢ }}$	予 ${ }^{\text {a }}$	${ }_{8}^{8}$		gix				\ddot{q}		${ }_{\text {¢ }}^{\text {¢ }}$	${ }_{\text {\％}}^{\text {\％}}$	${ }_{8}^{\text {\％}}$	
			景	童		0°	号宏	䁉	$\underbrace{\frac{0}{9}}$	$\underbrace{\frac{e^{x}}{\underline{x}}}$		号	号		吴	
	咅	$\frac{3}{2}^{\underline{x}}$	${ }_{\text {¢ }}^{\substack{\text { a }}}$	憲	$\begin{aligned} & \text { 告 } \end{aligned}$		噱肴				$e_{0}^{\text {采 }}$	$e_{0}^{\frac{8}{4}}$				$\underbrace{\text { ¢ }}$
	訔	学	돛	空		$\left.\right\|^{\frac{\pi}{2}}$		夏苞	票		$\stackrel{\pi}{\dddot{x}}$	$\hat{\frac{3}{2}}^{\frac{1}{4}}$	$\frac{\partial}{2}^{\Phi}$	흘		
	豆		㥯	$\frac{9}{\bar{b}}$	$\frac{\stackrel{U}{\partial}}{\bar{\partial}}$	蕽	㘏	笱要				㬊	恶		$\frac{1}{3}$	第躴
	茞	，	荌	皆	$0^{\frac{8}{0_{4}^{4}}}$		整晨	榢蓲		$\stackrel{0}{4}^{\text {要 }}$			擎			${ }^{\text {秡 }}$
	－	部	z	ㅇ	芌	$\frac{0}{\bar{o}}$			$\frac{0}{3}^{2}$	踣	菩		䓂	$0^{\frac{10}{4}}$	涝	$\stackrel{3}{3}^{\frac{3}{4}}$
	\％			$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { an } \\ \hline \end{array}$				0	z^{8}	$\gtrless^{\frac{x_{x}^{\prime}}{2}}$	$z^{\frac{8}{4}}$			茹	\％	${ }^{\text {可 }}$

MASK OPTIONS

No.	Part number	MB89875	MB89P875	MB89PV870
	Specifying procedure	Specify when ordering masking	Set with EPROM programmer	Setting not possible
1	$\begin{aligned} & \text { Pull-up resistors } \\ & {\left[\begin{array}{l} \text { P00 to P07, P10 to P17, } \\ \text { P20 to P24, P30 to P37, } \\ \text { P40 to P47, P50 to P57 } \end{array}\right.} \end{aligned}$	Specify by pin (in 2-pin unit for P10 to P17, and in 4-pin unit for P40 to P47)	Specify by pin (in 2-pin unit for P10 to P17, and in 4-pin unit for P40 to P47)	Fixed to without pullup resistor
2	Power-on reset selection $\left[\begin{array}{l}\text { With power-on reset } \\ \text { Without power-on reset }\end{array}\right.$	Selectable	Selectable	Fixed to with poweron reset
3	Selection of the oscillation stabilization time initial value $2^{18} / \mathrm{F}_{\text {нн }}$ (Approx. 26.2 ms) $2^{17} / \mathrm{F}_{\text {ch }}$ (Approx. 13.1 ms) $2^{13} / \mathrm{F}_{\text {cн }}$ (Approx. 0.8 ms) $2^{4} /$ Fcн (Approx. 0 ms)	Selectable	Selectable	Fixed to $2^{18 /} / \mathrm{FCH}_{\mathrm{CH}}$ (Approx. 26.2 ms)
4	Selection either single- or dual-clock system Single clock Dual Clock	Selectable	Selectable	Fixed to dual-clock system
5	Reset pin output With reset output Without reset output	Selectable	Selectable	Fixed to with reset output

Notes: - Reset is input asynchronized with the internal clock whether with or without power-on reset.

- P30 to P37 should be set to without pull-up resistor when an A/D conveter is used.
- P10 to P17 should be set to without pull-up resistor when an OP amp is used.
- P40 to P47 and P23 and P24 should be set to without pull-up resistor when an LCD controller/driver is used.

ORDERING INFORMATION

Part number	Package	Remarks
MB89PV870CF	80-pin Ceramic MQFP (MQP-80C-P01)	
MB89875PFV	80-pin Plastic SQFP (FPT-80P-M05)	
MB89P875PFV	80-pin Plastic QFP (FPT-80P-M06)	
MB89875PF		

PACKAGE DIMENSIONS

80-pin Plastic SQFP
 (FPT-80P-M05)

Dimensions in mm (inches)

80-pin Plastic QFP
(FPT-80P-M06)

Dimensions in mm (inches)

80-pin Ceramic MQFP (MQF-80C-P01)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3753
Fax: (044) 754-3329
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag

Germany

Tel: (06103) 690-0
Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 2810770
Fax: (65) 2810220

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

